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Abstract
The escalating demand for global wind power production, driven by the imperative need for sustainable energy
sources, necessitates accurate estimation of vertical wind profiles for efficient wind turbine performance assess-
ment. Traditional methods relying on empirical equations or similarity theory face limitations due to their
applicability beyond the surface layer. Recent studies explore Machine Learning (ML) techniques to extrapolate
wind speeds, but often focus on single levels, lacking a comprehensive approach to predict entire wind profiles.
This study proposes a proof-of-concept in addressing the challenge, utilizing TabNet, an attention-based sequen-
tial deep learning model, to predict the entire wind profiles, provided by large-scale meteorological features from
reanalysis. To make the methodology generic across datasets, the Chebyshev polynomials are used to approx-
imate the wind profiles with Chebyshev coefficients. Trained on the meteorological features as inputs and the
coefficients as targets, the TabNet better predicts unseen wind profiles for different wind conditions, such as high
shear, low shear/well mixed, low level jet, and high wind, with a good accuracy. The methodology also addresses
the correlation of wind profiles with associated atmospheric conditions by assessing the feature importance. The
model demonstrates the feasibility of predicting wind profiles from large-scale meteorological variables, providing
a valuable alternative to conventional methods.

Impact Statement
We applied deep learning in conjunction with Chebyshev polynomials to predict unseen wind profiles
provided large-scale meteorological features, and understand the associated atmospheric conditions. The
methodology can be extended to different locations and diverse wind profile datasets, and predicting wind
profiles for several years in a round-robin manner.

1. Introduction
The demand for global wind power production has seen a substantial surge, driven by the growing
recognition of renewable energy sources as a vital solution to combat climate change and the urgent
need for a sustainable, low-carbon future (Nagababu et al., 2023). Although offshore wind power tech-
nology is still in its initial stages, it is predicted to grow rapidly, which is primarily attributed to offshore
wind speeds being higher and more uniform as the distance from the coast increases (Guo et al., 2022).
© The Authors(s) 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
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Moreover, technological advancements have facilitated the deployment of the largest wind turbines to
date, such as the MySE 16-260 with a 16 MW capacity (Atlas, 2023), having a rotor diameter of 260
m and a hub height of 152 m, making it the largest wind turbine to reach a towering height of 280 m.

For such a massive wind turbines, the traditional use of hub height wind speeds in estimating power
output (IEC, 2005) is not suffice due to varying wind speeds across the rotor plane. Addressing this, the
rotor equivalent wind speed approach considers a wind profile within the rotor swept area, enhancing
reliability and accuracy in estimation of power output for such large wind turbines (Wagner et al., 2011;
Van Sark et al., 2019). Furthermore, specific meteorological conditions lead to the formation of distinct
wind profiles, such as low-level jets during strong stratification, well-mixed profiles during very unsta-
ble conditions, and Ekman profiles during neutral conditions (Durán et al., 2020). The atmospheric
stability parameters like wind shear and turbulence intensity during these different wind profiles sig-
nificantly influence power output (Elliott and Cadogan, 1990; Wharton and Lundquist, 2012). Beyond
power output, wind profiles under different stability conditions, including shear, veer, and low-level
jets, also contribute significantly to turbine loads (Dimitrov et al., 2015; Gutierrez et al., 2017; Park
et al., 2015). These findings underscore the paramount importance of analyzing wind profiles in both
wind resource assessment and turbine design analysis.

However, characterization of wind profiles across rotor-swept area has been hindered by the spar-
sity of observations at this height levels, since the deployment of wind measurements, such as wind
masts and lidars are generally too expensive. There are many similarity theory-based and/or empirical
equations exist, such as logarithmic law of the wall, Monin-Obukhov similarity theory, and Power law,
to name a few, which have been used in wind resource assessment applications to extrapolate near-
surface wind speeds from ground meteorological stations (Bañuelos-Ruedas et al., 2010) or satellites
(Optis et al., 2021) to several vertical levels. However, these equations would often require additional
information which are not usually measured by the ground stations, and would be only valid within
the surface layer (Basu, 2023), while the contemporary turbines’ swept-area lies far outside of this
layer. At present, the only reliable approach for estimating wind profiles is to use mesoscale models.
There have been several of such activities going on, such as, the Copernicus Regional Reanalysis for
Europe (CERRA) (Schimanke et al., 2021), New European Wind Atlas (NEWA) (Hahmann et al., 2020;
Dörenkämper et al., 2020), Dutch Offshore Wind Atlas (DOWA) (Wijnant et al., 2019), and Winds of
the North Sea in 2050 (WINS50) (Dirksen et al., 2022), to name a few. However, measoscale model
simulations require tremendous computational power.

In recent times, numerous machine learning (ML) studies have explored extrapolating near-surface
wind speeds to rotor-swept heights. Mohandes and Rehman (2018) employed deep neural networks
(DNN) to extrapolate wind speeds from lower lidar measurements to 120 m height, showing supe-
rior performance over the empirical local wind shear exponent method. Optis et al. (2021) investigated
methods to extrapolate near-surface wind speeds from satellite-based wind atlases to hub heights, with
ML models, particularly Random Forest (RF), outperforming traditional empirical methods. They high-
lighted that ML models trained on a limited number of lidars could accurately extrapolate winds at
various surrounding locations. Building on this, Liu et al. (2023) used three ML (random forest) mod-
els to estimate wind speeds at 120 m, 160 m, and 200 m levels, incorporating large-scale weather
features from ERA5 reanalysis and wind speed/direction from a remote sensing device. Including mete-
orological features significantly improved ML model accuracy compared to the empirical power law
method. Yu and Vautard (2022) extended this approach, constructing RF and extreme gradient boosting
(XGBoost) models to estimate a gridded dataset of 100 m wind speed using meteorological variables
from the ERA5 reanalysis. However, these ML studies focused on specific extrapolation levels and lack
generalization for entire vertical profiles.
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2. Problem statement
In this paper, our objective is to explore a deep learning (DL) approach for wind profile estimation,
leveraging large-scale features from existing reanalysis data. Traditionally, wind resource assessments
involve collecting observations for one year using met-masts, sodars, and lidars and extrapolating
winds for other years through the measure-correlate-predict (MCP) approach. To emulate this process,
our focus is on training a DL model for one year and predicting for a different year. As a proof-of-
concept, we utilized simulated high-resolution wind profiles from CERRA reanalysis and large-scale
meteorological features from ERA5 (5th generation European Centre for Medium-Range Weather
Forecasts (ECMWF)) (Hersbach et al., 2020) at a specific location. The challenge lies in generaliz-
ing the methodology for easy adoption with any datasets, could be observational data from various
measurements.

To achieve this, we initially approximate the CERRA wind profile using Chebyshev polynomials,
representing them with five coefficients. Using these coefficients as targets and ERA5 meteorolog-
ical features as inputs, a DL model is trained. While the aforementioned machine learning models
like Random Forest (RF) and XGBoost excel in regression problems, they are designed for predict-
ing single targets. Given our objective of predicting all coefficients simultaneously to obtain collective
wind profile information, we opt for state-of-the-art TabNet (Arik and Pfister, 2021), an attention-based
sequential deep learning model. Additional details about the data used are provided in subsection 3.1,
the Chebyshev coefficient estimation is explained in subsection 3.2, and the training procedure is out-
lined in subsection 3.3. The study’s results are presented in section 4, with concluding remarks in
section 5.

3. Data and Methodology
3.1. Data
3.1.1. Wind speed at different height levels
The CERRA is a state-of-the-art reanalysis developed by the collaborative efforts of the Swedish Mete-
orological and Hydrological Institute (SMHI), Norwegian Meteorological Institute (MET Norway), and
Meteo-France. CERRA provides height level wind speed at 12 vertical levels, that are: 10, 15, 30, 50,
75, 100, 150, 200, 250, 300, 400, and 500 meters above sea level. The dataset exist as analysis at every
3rd hour and as forecast at lead hours of 1, 2, and 3. In the present study, we utilized the three-hourly
analysis and the corresponding forecasts at lead hours of 1 and 2, collectively making an hourly dataset.
We collected point-based time-series wind profiles from 0000UTC on 1st of Jan 2000 to 2300UTC on
31st of Dec 2001, at the FINO1 site (54.0143N, 6.58385E), where several wind meteorological studies
have been conducted (Durán et al., 2020).

3.1.2. Meteorological variables
This study utilizes 34 large-scale meteorological variables from the publicly available and globally
acclaimed ERA5 reanalysis data as drivers for wind profiles. Out of these, 25 variables are adopted
based on the studies of Kartal et al. (2023), which are: W10, W100, 𝛼, u∗, W𝑖

𝑝10, 𝑇2, 𝑇0, 𝑇𝑠 , 𝑇𝑑2, 𝑃0,
H, 𝐻𝑆 , 𝐻𝐿 , 𝑇𝐶𝐶, 𝐿𝐶𝐶, 𝐶𝐴𝑃𝐸 , 𝐶𝐼𝑁 , 𝜖 , Δ𝑇1, Δ𝑇2, Δ𝑇3, 𝐻𝑅𝑆𝑖𝑛, 𝐻𝑅𝐶𝑜𝑠, 𝐷𝑌𝑆𝑖𝑛, and 𝐷𝑌𝐶𝑜𝑠. These
variables have same naming convention and description as mentioned in Table 1 of Kartal et al. (2023).
A comprehensive details of the remaining 9 variables are provided in Table 1.
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Table 1. Description of the large-scale meteorological variables adopted from the ERA5 reanalysis.

Type Variable Equation Description Units

Derived W10
√︃
𝑈2

10 +𝑉2
10 Wind speed at 10 m a.g.l. computed

from zonal and meridional components
m s-1

Derived W100
√︃
𝑈2

100 +𝑉2
100 Wind speed at 100 m a.g.l. computed

from zonal and meridional components
m s-1

Derived 𝛼
log W100/W10
log (100/10) Power-law exponent of wind profile

within 10–100 m a.g.l.
–

Derived W975
√︃
𝑈2

975 +𝑉2
975 Wind speed at 975hPa computed from

zonal and meridional components
m s-1

Derived W950
√︃
𝑈2

950 +𝑉2
950 Wind speed at 950hPa computed from

zonal and meridional components
m s-1

Derived ΔW975−100 W975 − W100 Difference in wind speed between
975hPa level and 100 m level

m s-1

Derived ΔW950−975 W950 − W975 Difference in wind speed between
950hPa level and 957hPa level

m s-1

Raw u∗ Friction velocity m s-1

Raw W𝑖
𝑝10 Instantaneous wind gust at 10 m a.g.l. m s-1

Raw 𝑇2 Air temperature at 2 m a.g.l. K
Raw 𝑇0 Skin temperature K
Raw 𝑇𝑠 Upper-level soil temperature K
Raw 𝑇𝑑2 Dew point temperature at 2 m a.g.l. K
Raw 𝑃0 Mean sea level pressure Pa
Raw H Boundary layer height m
Raw ℎ𝑐𝑏 Cloud base height m
Raw 𝐻𝑆 Instantaneous surface sensible heat flux W m-2

Raw 𝐻𝐿 Instantaneous moisture flux Kg m-2 s-1

Raw TCC Total cloud cover –
Raw LCC Low-level cloud cover –
Raw CAPE Convective available potential energy J kg-1

Raw CIN Convective inhibition J kg-1

Raw 𝜖 Energy dissipation rate in boundary
layer

J m-2

Raw 𝑇975 Air temperature at 975hPa K
Raw 𝑇950 Air temperature at 950hPa K
Derived Δ𝑇1 𝑇2 − 𝑇0 Difference in air and skin temperatures K
Derived Δ𝑇2 𝑇0 − 𝑇𝑠 Difference in skin and soil temperatures K
Derived Δ𝑇3 𝑇2 − 𝑇𝑑2 Temperature dew point spread K
Derived Δ𝑇4 𝑇975 − 𝑇2 Difference in temperatures between

975hPa and 2 m a.g.l.
K

Derived Δ𝑇5 𝑇950 − 𝑇975 Difference in temperatures between
950hPa and 975hPa

K

Derived HRSin sin
(

2𝜋Hour
24

)
Sine encoding of hours –

Derived HRCos cos
(

2𝜋Hour
24

)
Cosine encoding of hours –

Derived DYSin sin
(

2𝜋Day
365

)
Sine encoding of Julian days –

Derived DYCos cos
(

2𝜋Day
365

)
Cosine encoding of Julian days –

3.2. Estimating Chebyshev coefficients
Chebyshev polynomials allow one to approximate a function with smallest error as follows (Mason and
Handscomb, 2002):

𝑈 (𝑧) =
∞∑︁
𝑛=0

𝐶𝑛𝑇𝑛 (𝑧) (1)
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Here, we want to approximate the wind speed 𝑈 as a function of height 𝑧, with the combination of
Chebyshev polynomials 𝑇𝑛 multiplied by the corresponding coefficients 𝐶𝑛. The polynomials of the
first kind can be estimated through recurrence relation as follows:

𝑇0 (𝑧) = 1 (2)
𝑇1 (𝑧) = 𝑧 (3)

𝑇𝑛+1 (𝑧) = 2𝑧𝑇𝑛 (𝑧) − 𝑇𝑛−1 (𝑧) (4)

In this study, we employed fourth-order Chebyshev polynomials (Figure 1, 1st column). Once com-
puted, these polynomials simplify the problem into a system of linear equations, allowing for coefficient
estimation through equation solving or inverse matrix multiplication. The variable 𝑧 is normalized
between -1 and 1 in real data before estimating coefficients. For a wind profile with 12 vertical levels
and Chebyshev polynomials of order 4 (𝑇0 to 𝑇4), five Chebyshev coefficients (𝐶0 to 𝐶4) are estimated,
reducing the wind profile’s complexity to five coefficients. If at all there exist different wind profile data
(could be observations) up to 500 m level, not necessarily at the same vertical levels as stated here, still
the coefficient estimation works well, making this methodology generic across different datasets.

𝑇0 represents a constant line, with 𝐶0 approximating mean wind speed. Similarly, 𝑇1 corresponds
to a diagonal line, and 𝐶1 approximates wind shear. The parabolic profile of 𝑇2 is captured by 𝐶2,
representing curvature in the wind profile. These three coefficients are expected to capture a significant
portion of the wind profile, while higher-order coefficients account for small-scale variations.

To illustrate the capability of Chebyshev coefficients, we compared four wind profiles from CERRA
with their Chebyshev approximations (Figure 1). These profiles, namely high shear, low shear/well-
mixed, low-level jet (LLJ), and high wind, selected from (Durán et al., 2020), are crucial for wind
energy applications. The figures demonstrate the effective approximation of CERRA wind profiles by
Chebyshev coefficients.

3.3. Experimental setup
Figure 2(a) illustrates a complete flowchart of the training procedure adopted in this study. First, the
ERA5 predictor meteorological variables as inputs and the estimated Chebyshev coefficients as targets
are stacked side-by-side as a tabular data. Next, the entire data of year 2001 is kept aside for testing
purpose. Now, among the data of year 2000, randomly selected six consecutive days of each month
are used for validation purpose. The remaining data is adopted for training the models. This ensures
that the training and validation data covers seasonality given one year sample size. The data splitting
strategy is illustrated in Figure 2(b). After splitting, there are 7056 samples in training, 1728 samples
in validation, and 8760 samples in testing. After this, a min-max normalization function is constructed
on the targets of training data, using which the targets of training and validation data are normalized.

The TabNet consists of several hyperparameters, in which we chose to tune 𝑛𝑑 (width of decision
prediction layer), 𝑛𝑠𝑡𝑒𝑝𝑠 (number of steps in the architecture), 𝑁𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (number of independent
Gated Linear Units), 𝑛𝑠ℎ𝑎𝑟𝑒𝑑 (number of shared Gated Linear Units), and 𝑔𝑎𝑚𝑚𝑎 (coefficient for
feature reusage). The readers are encouraged to go through the study of Arik and Pfister (2021) for
more information about the architecture and the hyperparameters. Next, a random search is employed
for tuning the model hyperparameters from the parameter spaces of 𝑛𝑑:[4,8,16], 𝑛𝑠𝑡𝑒𝑝𝑠:[3,4,5],
𝑛𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 :[1,2,3,4,5], 𝑛𝑠ℎ𝑎𝑟𝑒𝑑:[1,2,3,4,5], and 𝑔𝑎𝑚𝑚𝑎:[1.1,1.2,1.3,1.4]. With these parameters, the
TabNet model is trained on the training data using the mean squared error (MSE) as loss function, and
is evaluated on the validation data. Once the training is completed, the validation loss is estimated and
the model is saved as an external file. After the hyperparameter tuning, the entire training procedure
is looped for 10 ensembles beginning from the random train-validaiton splitting. For each ensemble,
there will be one best model saved. The inner loop of hyperparameter tuning makes the model robust
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Figure 1. Column 1: An illustration of Chebyshev polynomials of order 𝑛 = 4 (𝑇0, 𝑇1, 𝑇2, 𝑇3, and 𝑇4),
plotted against the normalized height 𝑧 = [−1, 1]. Rest of the figures illustrates the vertical profiles
of wind speed from CERRA and the Chebyshev approximated, for four well-known categories of wind
regimes: high shear, low shear or well mixed, LLJ, and high wind..

across the hyperparameters on the same data, while the outer loop is essential for ensemble model pre-
dictions. A sample learning curves obtained from one of the saved models is illustrated in Figure 2(c)
which gives confidence that the models are training well.

4. Results
The model predictions are obtained for the test data, upon which the performance evaluation is con-
ducted using metrics, namely mean absolute error (MAE), coefficient of determination (𝑅2), root mean
square error (RMSE), and the mean absolute percentage error (MAPE). Figure 3(first column) illus-
trates a comparison of predicted coefficients from one of the ensemble models with respect to the test
data using bivariate histograms. Among the coefficients, 𝐶0 and 𝐶1 are seen to have a large portion of
occurrences falling on the diagonal line with a narrower spread. Notably, the model is seen to have high-
est predictability for 𝐶0 with 𝑅2 of 0.93 and moderate for 𝐶1 with 𝑅2 of 0.65. On the other hand, the
remaining coefficients are seen to have values with high frequency of occurrence close to zero, while
the values with low probability are showing a wider spread. For these coefficients, the predictability is
not so good.

In addition, the influence of input meteorological variables on the predicted coefficients is also esti-
mated based on the idea that the feature importance can be measured by looking at how much the
score decreases when a feature is not available. From the feature importance, as shown in 3(second col-
umn), it is evident that the meteorological variables directly related to wind speed (W10 to W𝑖

𝑝10) are
showing significant influence on the coefficients, which is expected. A major finding from the feature
importance is that identification of atmospheric stability related variables, such as the boundary layer
height (H), instantaneous surface sensible heat flux (𝐻𝑆), difference in air and skin temperatures (Δ𝑇1),
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Figure 2. a) Flowchart of the experimental setup used in this study to train the TabNet. b) Our strategy
of splitting the entire dataset into train, validation, and test. c) Loss curves of one of the trained model,
in which the train and validation RMSE values are plotted agains the training epochs..

and the difference in 975hPa and 2 m air temperatures (Δ𝑇4), are also exerting significant influence on
wind profiles. With these identified influential variables, one can accurately characterize different wind
profiles, which would help in better estimation of wind power and their impact on wind turbines.

Since the main objective of this study is to predict the wind profiles given large-scale meteorological
features from the ERA5, we wanted to see how well the predictions are coming from the trained models
on test data. For that, the complete wind profiles are estimated using the predicted Chebyshev coeffi-
cients, and a sample of four profiles from the ten ensemble model predictions are presented in Figure 4.
From the figure, it is evident that the predicted profiles are well matching with the CERRA test samples,
even the dispersion between 10% to 90% and 25% to 75% are also very close to the median. However,
not every prediction is turn out to be accurate, as shown in Figure 5, where wind profiles are illustrated
during four different set of time instances. A keen observations of Figure 5 indicates that there exist
a significant magnitude difference between the ERA5 and CERRA wind speeds, which could be the
source of poor predictions at these instances. Nonetheless, the TabNet is well capable of capturing the
wind profiles, such that the predicted profiles lie between the ERA5 and CERRA wind speeds. This
uncertainty could be further reduced with training on large input samples and diversified locations. A
possible future work is inevitable in this regard.

5. Conclusion
In this work, we demonstrated a proof-of-concept for estimating wind profiles using large-scale mete-
orological features from ERA5 reanalysis with the TabNet, an attention-based deep learning model.
Chebyshev polynomials were employed to approximate wind profiles with 5 coefficients, ensuring
the methodology’s applicability across various wind profile datasets. Results indicated that TabNet
effectively captured nonlinear dependencies between meteorological features and wind profiles across
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Figure 3. First row: A comparison of Chebyshev coefficients (𝐶0, 𝐶1, 𝐶2, 𝐶3 and 𝐶4) between the test
data and the model predictions using the Bivariate histograms. The probability of occurance is repre-
sented on a log scale with the color increasing from dark (low probability) to light (high probability).
The evaluation scores, namely MAE, 𝑅2, RMSE, and MAPE for each coefficient are provided in the text
boxes. Second row: the combined feature importance of input variables on the target coefficients, on
the test data..
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Figure 4. A comparison of vertical profiles of wind speed from CERRA and the 10 ensemble model
predictions, on four instances of test data for the selected wind regimes. Blue line represents the 50th
percentile of ensembles, darker shade represents the ensemble between 25th and 75th percentiles, and
the ligher shade represents the ensemble between 10th and 90th percentile. The wind speed from ERA5
at 10 m (W10) and 100 m (W100) are illustrated using green diamonds..

different wind regimes. Feature importance analysis highlighted the significant influence of wind speed
and atmospheric stability variables on coefficients.

However, there is room for improving model accuracy, as evidenced by the modest correlation in
higher-order coefficients. Future work involves thorough parameter optimization, incorporating new
meteorological variables, and exploring alternative deep learning models. Additionally, we plan to
extend this methodology to different locations and diverse wind profile datasets, predicting for several
years in a round-robin manner.
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